"Aerospace: Sustainability and Lightweight Materials Technology"

ALUMINIUM Business Summit 2021 Shaping a new Industrial Era

28 - 29 September 2021: Düsseldorf /Germany

Dr. Blanka LENCZOWSKI- Airbus Technology / Munich / Germany

Contributor: Paulo LAGE / Airbus / Filton / UK David PALOMINO / Airbus Operations GmbH / Bremen/ Germany Alexis GONZALEZ-CHIAPPE / Airbus Operations / Toulouse / France

Airbus is an international pioneer in the aerospace industry

.........

H₂ energy

We are a leader in designing, manufacturing, and delivering aerospace products, services and solutions to customers on a global scale.

Ambition to be the first to offer a zero-emission commercial aircraft by 2035

AIRBUS ZERO

ZEROe concept aircraft powered by hydrogen

Sustainability

ATAG WAYpoint 2050

Technology & Take off Weight

JSTAINABLE

September 2020

ORUM

The Global Sustainable Aviation Forum is made possible with the support

AIRBUS

cfm

A BOEING

TATA

Design & fuel-efficient aircraft

Airbus reducing Emission

Aviation

ŶŶ

65.5 million jobs worldwide

3.6% on the global GDP

4 billion passengers were transported in 2018

Airbus / Annual Report - Overview 2020

Sustainability

Global greenhouse gas emission by sectors

Footprint reduction

"...Turning to industrial operations, the High5+ initiative aims to reduce the footprint of all Airbus activities globally and across the supply chain. It has specific targets for 2030, against a 2015 base line, for cutting energy consumption, CO2 emissions, water consumption, volatile organic compound emissions and waste production."

High5+

"Sustainability is now deeply ingrained in the Company's purpose and is truly becoming part of its DNA."

Airbus / Annual Report - Overview 2020

AIRBUS

Source: Airbus / Annual Report 2020

Next Generation & Sustainable M&P

Product responsibility

The right balance between social, economical and environmental commitments.

AIRBUS

Key ambitions

DECARBONISATION

ENVIRONMENTAL FOOTPRINT CIRCULAR MODEL ECO DESIGN DIGITALISATION

NEW BUSINESSES

Airbus climate action plan

Improving fuel burn of our existing fleet

Investing in zero-emission technologies

Developing sustainable alternative fuels (SAF)

Optimised day-to-day aircraft operations

Monitoring climate change

Decrease of Aluminum Usage

A320

Automated Lok bolting

Note: Engine, Landing Gear not included

A300/A310 •SPF Ti Chemical milling Interference bolting •7475 Al-alloy sheet/plate

A330/A340

A340-600/-500

•Premium Al-castings •7349 Al-alloy extrusions

 Split mandrel cold working Age forming •High Speed Machining High strength Al-castings •2X24 Al-alloys •7150 Al-alloy plate (wing) LVER* riveting •SPF AI Split sleeve cold working

Digital E2E supply chain A320neo A350 •AI-Li alloys for ribs •CrVI free surface Topology optimisation Fiber Metal Laminates A380 •EB and extended LBW •AI-Li alloys, Ti-alloys •Al-alloys: 2024HDT, 7055HF •Large die forging (7085) •New coatings A318 Larger panels Laser beam welding LBW •6013/6056 Al-alloys New bonding technology

Introducing Airbus 👬 <100 1,000+nm iii <200 2,000+nm Turbofar AIRBUS

Sustainable A/C

Aircraft Fuselage Design – General Requirements

Weight savings & material properties

Property improvement

Alloy	Δρ	∆Young's Modulus
	[%]	[%]
AlCuMg	-	-
AlMgSiCu	-2,5	+ 1,5
AlCuLi	-5	+11,1
AIMgSc	-4,7	+ 5,8
AlMgLi	-9,4	+11,6

AIRBUS

⇒ Ca. <u>80%</u> of SA typical fuselage is designed by <u>fatigue</u>, <u>DT</u> & <u>reparability</u>

New advanced technologies & materials AI-Mg-Sc & AI-X-Li

Weight savings & material properties

1 SKIN: 2024 CLAD SHEET 2 STRINGERS: 2024 CLAD STRIP 2024 EXTRUSIONS 7075 EXTRUSIONS 3 FRAMES: 2024 CLAD SHEET 2024 PLATES (mach.) 7010/7050 PLATES (mach.) 7075 PLATES (mach.) **4 SEAT TRACKS:** 7175 EXTRUSIONS 5 FLOOR BEAMS & STRUTS: 7175 EXTRUSIONS 6 PAX WINDOW FRAMES: 7175 PRECISION FORGING

1 SLATS-SKINS & RIBS: **2618 SHEET** 2 D-NOSE SKINS: **2024 SHEET** 3 TOP PANEL: 7150 PLATES & EXTRUSIONS 8 MAIN LANDING GEAR 4 BOTTOM PANEL: 2024 PLATES & EXTRUSIONS 5 SPARS & RIBS: 7010/7050 PLATES

6 FLAP SUPPORT: 7175 FORGINGS 7 FLAP TRACKS: A357 CASTINGS 7075 PLATES SUPPORT: 2014 FORGINGS 7010/7050 FORGINGS

Why Composite Materials?

CARBON FIBRE COMPOSITE:

- Highest strength-to-weight ratio
- Highest Tensile Strength
- Dimensional Stability
- Very good fatigue behaviour
- Specific design possibilities, adjusting fibers direction of some layers to the applied loads

METALS & METALLIC ALLOYS:

- Static behaviour
- Good impact resistance
- Reparability
- Recyclability

Fuselage A350XWB

Wing A350XWB

Example for Circularity in Metal Manufacturing

Use of recycled content

Material specifications allow the **use of recycled content** for the production of virgin material.

Dependent on the supplier and concrete metal materials **up to 70% of recycled content** is used in some aluminium or titanium alloys. This **reduces** the **extraction of materials** and **lowers the energy** footprint.

Chip recycling

Chips are collected, different materials separated from each other and sorted with respect to contamination to aim **for high value recycling**.

100% of metal chips are recycled.

Buy-to-fly reduction

Although metal chips can be recycled at high value, metal manufacturing aims to **optimize material consumption**.

The buy-to-fly ratio for some machined parts could be **reduced by a factor of 7** by innovative nesting process imposed on the supply chain.

Additive Manufacturing

3D printing is already part of our manufacturing process, and our fleet is equipped with metal and plastic parts produced by this innovative technique.

Additive manufacturing requires **30% to 55% less weight**, 90% less raw material and up to **90% less energy and water**.

Example for Circularity in Composite Manufacturing

Thermoset reuse

Uncured composite thermoset material at manufacturing level like cutting areas or end of spools are collected and reprocessed to be **reused** in our products.

The end of spools uncured thermoset material from the **A350 wing skins is reintroduced as gusset filler**. More than 6 tonnes of materials saved.

Thermoplastic reuse

Thermoplastic material has the great potential of **recovering fiber and resin** for reuse.

Thermoplastic foam production **cut-offs** from door- & doorframes-linings are sorted and reprocessed. Currently 4th generation qualified for initial application.

Buy-to-fly reduction

Composite manufacturing aims for **maximum efficiency in composite material consumption**. A low buy-to-fly ratio is supported by material format, nesting optimization and innovative material layup technologies.

For the A350 wing cover the **waste** could be **reduced by 30%** by introducing automated fiber placement (AFP) instead of automated tape layer (ATL).

Bio-based content

Introduction of bio-based content in composite materials is key to move away from reliance on petrochemical industry.

We are working in frame of **research and technology** on the production of carbon fibers from biomass captured CO2 and bio-based resins.

14 Source: Christian Rückert /Airbus: AEROMAT 2021 R&T Image sources: (2) Solvay; (4) TU Munich

Al-X-Sc- Scalmalloys[®] for ALM \Rightarrow "game-changer"

Mg

 \circ

66

AI-X-Sc- Scalmalloys[®] for ALM \Rightarrow "game-changer"

Aluminium in Airbus

KEY FIGURES

- Airbus Aluminium annual consumption: ~100kT/ Year)
- **6 Sub products:** Plates, Sheets, Wing skins, Extrusions, Tubes and Bars.
- **Global Supply Chain**: >10 suppliers distributed in Europe, US and China

ALUMINIUM CONSUMPTION SPLIT PER PRODUCT*

ALUMINIUM GLOBAL FLOWS

- <u>Global supply chain</u> supporting Local-for-local (L4L) consumption: ~75% of demand locally optimized
- Unbalanced Production Vs Demand in North America
- Increasing production in China driven by strategic initiatives by Airbus

Aluminium Market Trend and Geopolitical Context

B77

MARKET TREND & KEY FIGURES

- Global aluminium demand is significantly growing (+5.1%/year over the last 15 years) driven by China and the automotive industry
- **Instability** of Raw Aluminium prices (e.g. LME) driven by **speculation** and Geopolitical context
- Airbus only represents 0.15% of the Global Demand

GEOPOLITICAL CONTEXT

- Global <u>**Trade War**</u> initiated by US administration (+10% Aluminium imports to US) followed by EU (+25% on AI Sheets and Extrusions), China and Canada led to 12 M\$ over cost to Airbus in 2019
- **Brexit** will have a significant impact on both and Production

1600

***** BRENT CRUDE OI

18

1980

1990

Year of introduction into service

2000

2010

Digital Design, Manufacturing & Services

INCREASING CUSTOMER DEMANDS

EVOLVING SOCIETAL EXPECTATIONS

NEED FOR BREAKTHROUGH

(V)

DDMS

Step change in our operational efficiency <u>across the whole</u> <u>lifecycle</u> of our programs and products drivers to enable breakthrough.

5 pillars:

- Transformation & competences
- Modelling & simulation
- Co-development & Integration
- Digital Continuity & Tool Chain
- Product lines

Materials Ecosystem & Sustainable drivers for M&P

In high altitude:

- Radiation (x-rays, ultraviolet,...) &
- Charged particles (galactic cosmic rays, auroral particles, solar protons)

Environment & sustainable drivers for M&P:

- Regulations
- Re-use & recycling
- Critical & Ethical materials
- B2F
- Bio-sourced materials
- LCA
- Eco-efficient ind. processes
- New sustainable technologies

>2030

AIRBUS

• Sustainable enterprises

Materials contributing to cost reduction and performance increase

Material offering new opportunities by co-designing new products

Material multi-functional, bio-based & digital design & manufactured

2020

Introducing ZEROe

Why Hydrogen?

Zero emission: H2 emits no CO2 * & has the potential to reduce non-CO2 emissions (i.e. NOx) & persistent contrails

Declining costs: the cost of producing H2 is likely to decline over the next decade, which will make zero-emission flying increasingly economical

Energy dense: H2 is 3x lighter than jet fuel but has a lower volumetric density, thereby requiring a different storage solution on aircraft

Disruptive technologies for:

- Hybrid Electric Regional Aircraft
- Short and Medium-Range Aircraft
- Hydrogen-powered Aircraft

Thank you for your attention!

Thanks to contributors: Frank PALM; David SCHIMBÄCK/Airbus Technology / Munich / Germany

02 - 04 November 2021 Virtual Conference

4th International Conference on Light Materials - Science and Technology

LightMAT 2021 provides a platform for academic and industrial researchers, scientists and engineers to present and discuss the recent development and progress made in Magnesium, Aluminum, Titanium and their alloys and materials combinations.

LightMAT 2021 will be held as a Virtual Conference

Abstract submission is still possible

Based on previouse LightMAT conference