

High Strength Aluminium meetsResponsible Manufacturing- 3d printed parts with EOS Al2139 AM

Additive manufacturing principle

High strength aluminium in AM

Primary Challenge

- \rightarrow Extremely high cooling rates
- \rightarrow Wide solidification range
 - → Solidification cracking

(present in 2000-, 6000- and 7000-series Al alloys)

Current solutions:

- → Modification from standard chemical composition
- → Addition on nucleants (non-metallic or metallic)
 - Additives within / among powder
- \rightarrow New high strength alloys for AM
- \rightarrow Extreme processing conditions

e%5

EOS Aluminium Al2139 AM

60µm for EOS M290 50µm for EOS M400-4 (release Q4/2022)

Outstanding strength within AM aluminum alloys

60µm | EOS M290

50µm | EOS M400-4

Chassis bracket

Wheel carrier

Cylinder head

Main Characteristics

- \rightarrow Unmatched strength in temperatures between 50-200 °C
- \rightarrow Robust one-step heat treatment (T4)
- \rightarrow No additions / MMC or rare earth elements
- \rightarrow Parts can be electropolished and anodized

Typical Applications:

- → Aviation & Space industries
- \rightarrow Racing, Transportation & Mobility
- → Lightweight designs

Anodized flow adaptor

EOS Aluminium Al2139 AM vs AlSi10Mg

EOS Aluminium Al2139 AM vs AA7075 60μm EOS M290 50μm EOS M400-4

EOS Core

Yield strenght [MPa] vs Temperature [°C]

Temperature [°C]

Similar yield strength at room temperature

Improved properties above 150 °C

Limited endurance above 250 °C

60µm | EOS M290

50µm | EOS M400-4

CORE TRL 3

Early customer access for new solutions

Limited promise on technical performance and no statistics yet available

Restricted quality assurance procedures in place

Development still ongoing Upgrades/changes possible Products have smaller stocks and might have longer delivery lead times

60µm | EOS M290

50µm | EOS M400-4

CORE TRL 3

Early customer access for new solutions

Limited promise on technical performance and no statistics yet available

Supporting & part design need more attention

Massive & bulky parts challenging due to internal stress build-up

Avoid sharp corners in parts

Involve EOS Application engineering team!

Ensure the suitability of customer application and part & support design for Al2139

Key Differentiators vs. Competitor alloys

AM possibilities with responsible manufacturing

eøs

Additive Manufacturing brings new possibilities

Heat exchangers – optimized thermal management

Improved efficiency

Ø

300% higher heat rejection

Weight reduction

22% reduction in weight

Technology enablement

Enables new sustainability applications due to small footprint and improved thermal management

Ariane 6: Injector head – Mission critical class 1 component

Benefits

- From 248 parts to 1 single unit
- No weak points
- 50% lower costs
- 25% less weight
- Lead time from 3 months (casting) to 35 hours

Less power consumption

During use, this dual function inductor needs up to 60% less energy

Additional benefits

Functional integration of heating and quenching, flow optimized cooling channels, up to 58% reduction of part cost

Higher productivity

Through its 2.5 times longer life time compared to conventional inductors, it has a higher productivity and needs less material for re-production

Customization

Custom cranial implant

Patient specific reconstruction

CAT scan based implant creation to recreate patient specific features

On demand production

Reduced scrap and waste due to on demand production.

in treating

Improved patient recovery

Bone like structure to improve patient recovery time

On demand and decentralized production

Digital Spare Parts Warehouse for Buses

0

)

Digital warehouse

Digital and sustainable spare parts management for buses

Increased profitability

Decentralized manufacturing of 3D printed components for buses on demand

21

Sustainability aspects

Less transportation and warehousing, less overproduction and extended use phase due to repair on demand

M.Sc. Eero Virtanen

EOS Oy, Electro Optical Systems Finland Development Manager, Aluminium Alloys

eero.virtanen@eos.info

www.eos.info