

TOMRA

Frank van de Winkel Düsseldorf September 27th 2022

EU demand for semi-finished aluminum per sector for 2017-2030-2050 in Mton/yr².

EU demand for aluminum ingots from 2000 to 2050 showing a growth scenario for aluminum on recycled basis¹.

Market drivers & trends in the Aluminum industry (EU perspective)

- EU demand for aluminum to grow +40% from 2018-2050
- Growth driven by
 - Transportation sector (lightweighting, EV's)
 - Building & Construction sector (EU Green Deal focus on energy efficiency)
 - Packaging sector (increased pressure on plastics from EU Single Use Plastic Directive, increased collection & recycling targets)
- Growth predominantly covered by recycled aluminum
 - Limited primary production capacity
 - Circular economy pushing legislations for CO₂ reduction and incentivizing recycled content

Sources:

Producers introducing 'Green' aluminum alloys

X-Ray Transmission (XRT) technology

- Sorting based on a difference in atomic density
- XRT technology allows sorting into different products

High density

Low density

Magnesium

Wrought aluminum

Cast aluminum

Heavy metals

CASE STUDY Aluminum recycler in Italy:

Input material:

Aluminium profiles & sheet Taint/Tabor

Contaminations: Zinc, brass attachments or inclusions Some free heavy metals Very little castings, Zamac (zinc alloy) Plastics, non-metals

Contamination level only few %

Input content of zinc ~0,5-1% Zn

CASE STUDY - Shredder Downstream Process

CASE STUDY - Product quality

- **Zinc** < 0.04 0.05%
- **Copper** < 0.04 0.05%

Added value:

- Sell at 95% of LME
- For example: Price-Delta = € 300 / ton (depends on actual market conditions)
- Aluminum scrap used for remelting; production of extrusion billets.

Losses:

- Fines 0-5mm (3-5%) sold as dross/slag to slag recycler
- 8-10% in waste, ferrous, stainless etc.
- 1-2% aluminum into ejected contaminants

Data: 04/06/18 19:38:48 Campione: F1XC 724 Lega:						Operatore: Modo d'analisi:		RG Concentrazione		
	AI %	Si %	Fe %	Mg %	Zn %	Mn %	Cu %	Gr %	Pb %	Sn %
Med.	98.444	0.313	0.213	0.301 7r %	0.036	Ni %	Bi %	Na %	Ca %	0.000
	51 %	11 %	V 70	21 70	CU 70	111 70	DI 70	Na /0	Ca /0	

CASE STUDY - Aluminum remelter Italy

Aluminum Foundry & extrusion plant

- Two tilting furnaces, double chamber
- 5 presses
- 48.000 tons per year of produced extrusion profiles

Mainly 6060 alloy:

- Similar to primary quality
- Fe < 0.24%
- Zn < 0.045%
- Mn < 0.04%
- Cu < 0.03%

CASE STUDY - Benefits for Indinvest

Opportunities for recyclers by sorting aluminum scrap

Benefits for remelters using secondary scrap instead of primary aluminum

€

Secondary scrap price vs. primary

Case study example: +€1.5M /yr by doubling scrap content

Reduce energy consumption

Case study example: -6% energy consumption by reduced holding time etc.

Increase production capacity by reducing dross

Case study example: +€1M /yr by increasing capacity by 2%

Laser-Induced Breakdown Spectroscopy – The next step in aluminum sorting

Detection of elemental composition (incl. Si, Mg, ..)

Further sort scrap into different alloys / alloy groups (Eg. 6xxx out of mixed sheet)

Increase scrap quality by further reducing alloying elements

Demand for (recycled) aluminum will continue to grow

Focus on carbon footprint & recycled content

Higher scrap qualities are needed

Proven technologies such as X-Ray Transmission are capable of upgrading aluminum scrap

New technologies will provide more opportunities

