

Weldability of AI components produced by L-PBF

Alexander Schwarz | 28.09.2022

Weldability of Al components produced by LPBF Agenda

- Laser powder bed fusion (L-PBF)
- Challenges
- Laser welding in vacuum
 - First test series
 - Second test series
- Conclusion

Weldability of AI components produced by LPBF Laser powder bed fusion (L-PBF)

Principle of the laser powder bed fusion (L-PBF) process

- Absorption of the laser radiation on metal surface
- Heat conduction into the material leads to complete melting of the powder material
- The process consists of three basic steps
 - 1. Application of a defined powder layer (Recoating)
 - 2. Melting of the powder according to the CAD model
 - 3. Lowering of the build platform by a layer thickness (Leveling)

Weldability of Al components produced by LPBF Challenges

Inconsistent solubility of aluminum for hydrogen
 The jump in solubility for hydrogen leads to pore formation during welding

Weldability of Al components produced by LPBF Challenges

- Inconsistent solubility of aluminum for hydrogen
 The jump in solubility for hydrogen leads to pore formation during welding
- <u>Porosity of the base material</u>
 The pores in the base material include gases and loose powder, which influences the welding process

Weldability of Al components produced by LPBF Challenges

- Inconsistent solubility of aluminum for hydrogen The jump in solubility for hydrogen leads to pore formation during welding
- <u>Porosity of the base material</u>
 The pores in the base material include gases and loose powder, which influences the welding process

→ Tungsten Inert Gas (TIG)-Welding of the additive manufactured AlSi10Mg results in weld seams with a high porosity

Weldability of AI components produced by LPBF Laser welding under Vacuum

۰.

Advantages of the vacuum

- Reduction of the temperature of the boiling point
- Lower temperature of the vapour cavity reduces the amount of molten base material
- Fewer impurities in the weld pool

Weldability of AI components produced by LPBF Laser welding under Vacuum – First test series

2 Passes

Penetration depth:	1,68 mm
Porosity:	3,308 %
Ø largest pore:	0,16 mm

<u>4 Passes</u>

Penetration depth:	1,68 mm
Porosity:	2,17 %
Ø largest pore:	0,12 mm

<u>6 Passes</u>

Penetration depth:	1,62 mm
Porosity:	4,179 %
Ø largest pore:	0,19 mm

Weldability of AI components produced by LPBF Laser welding under Vacuum – Beam oscillation figures

Results first test series

- The first test series shows a reduction in porosity
- There are still pores left in the weld seam
- A Solution can be a change in the beam oscillation figure, known from conventional welding

Advantages of the beam oscillation

- Multiple interactions between the beam and the weld pool
- The time for the outgassing is extended

Weldability of AI components produced by LPBF Laser welding under Vacuum – Beam oscillation figures

bubble 2 separation	bubble 1 bubble 2	pore 1 bubble 2	
5 ms	6 ms	7 ms	
<u>out beam</u> none	<u>oscillation</u>		<u>Pore</u> Osci
- 4 kW			Amp <i>P</i> =
4 m/min 560 µm			v = d _f =

Pore formation with	<u>beam oscillation</u>
Oscillation figure:	Circular, 100 Hz
Amplitude:	0,75 mm
<i>P</i> =	4 kW
<i>v</i> =	4 m/min
$d_f =$	560 µm

Source: Fetzer, Florian; Sommer, Martin; Weber, Rudolf; Weberpals, Jan-Philipp; Graf, Thomas (2018): Reduction of pores by means of laser beam oscillation during remote welding of AIMgSi. In: Optics and Lasers in Engineering 108, S. 68-77. DOI: 10.1016/j.optlaseng.2018.04.012.

Amplitude:

P =

v =

 $d_f =$

Weldability of AI components produced by LPBF Laser welding under Vacuum – Second test series

Parameter first pass

Pressure:	7 mbar		
Laser power:	500 W		
Welding velocity:	10 mm/s	Conventional part	LPBF part
Shielding gas:	5 l/min	(EN AW 5083 [AlMg4,5Mn0,7])	(AlSi10Mg (a))
Oscillation figure:	Circle		
Amplitude:	0,2 mm		
Parameter for second v	weld seam		
Oscillation figure:	Circle		
Amplitude:	0,5 mm		

Weldability of Al components produced by LPBF Laser welding under Vacuum – Second test series

Pressure [mbar]	Laserpower [W]	Welding velocity [mm/s]	Shielding gas flow [l/min]	Oscillation figure	Amplitude [mm]
7	500	10	5	Circular	0,2
7	500	10	5	Circular	0,5

Weldability of AI components produced by LPBF Laser welding under Vacuum – Second test series

First Pass

- Porosity is already reduced in contrast to the conventional manufacturing
- Still some pores left on the transition between the AM part and the weld
- No pores on the transition between the weld and the conventional material

Weldability of AI components produced by LPBF Laser welding under Vacuum – Second test series

Second Pass

- Porosity is below 0.5 %
- The second pass has multiple influences
 - Further reduction of the porosity
 - Increase of the penetration depth from 1.6 mm to 2.3 mm

Weldability of Al components produced by LPBF Conclusion

- Different variables from the manufacturing process are influencing the welding process
- Laser welding under vacuum has been proofed as a sufficient solution
- But only with correctly chosen parameters a pore-free welding is possible
 - This includes the laser parameters as well as the movement of the beam
- Some limitations of the process are left:
 - Need for a vacuum
 - Limited build chamber
 - Automated process, only partly suitable for AM

Your contact

Dr. Alexander Schwarz

Head of Design Engineering Campus-Boulevard 79 52074 Aachen

Phone Email +49 (0)212 38242958 a.schwarz@iwf-research.com

www.acam-aachen.de

Get in touch with our experts and become a part of Europe's most vivid AM and engineering ecosystem!

